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1. Introduction

Black hole in AdS space has a remarkable property that it undergoes Hawking-Page (HP)

phase transition [1]. Asymptotically AdS space allows two kinds of black hole configura-

tions. By comparing their sizes with respect to the AdS scale, one can characterise these

holes. While the small black holes have horizon sizes less than that of the AdS scale,

the big black holes are larger than the AdS scale. These small black holes, however, are

unstable with negative specific heat; leaving big black holes as the stable configurations

in AdS space. Furthermore, it was noticed that, as we tune the temperature close to the

inverse of the AdS scale, there is a first order phase transition. At a temperature below

the inverse AdS scale, system prefers thermal AdS space, while at higher temperature, it

is the big black hole phase which minimises the energy of the system. This crossover is

known as HP transition. Via AdS/CFT correspondence [2], this phenomenon was found

to have its imprint on the gauge theory residing on the boundary. Witten argued [3] that,

on the boundary, the HP transition represents a large N deconfinement transition of the

gauge theory at strong coupling.

Certain analytical continuation of the black hole metric in AdS space gives bubble

of nothing solution [4, 5]. These are the analogues of Witten’s Kaluza-Klein bubbles in

flat space-time [6]. Bubble spacetime corresponds to time dependent configuration and, as

we review later, in five dimensions, the boundary metric is dS3 × S1. By using AdS/CFT

correspondence, one then hopes to learn about gauge theory on time-dependent geometries.

An important ingredient in the AdS/CFT correspondence is the principle of holography [7].

According to this principle, the physics of a gravitational theory is dual to a different

theory in one lower dimension. Conversely, given a dual theory on a boundary, we must
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consider all possible bulk space-times whose boundaries have the same intrinsic geometry

as the background of the dual theory. Now, given that the boundary metric is dS3 × S1,

there exists another bulk geometry known as AdS orbifold. These are the five dimensional

analogues of BTZ black holes [8, 9]. These orbifolds are however unstable and below a

critical size of the boundary S1, they decay to bubbles of nothing [10, 11]. A bubble, once

formed, expands exponentially and fills up the whole space-time. Though in AdS, this

is similar to the decay of the Kaluza-Klein space to nothing. For other studies involving

decay into bubbles of nothing, obtained by analytically continuing black hole solutions

see [12 – 14].

In this paper, after briefly reviewing the HP transition and orbifold decay in section 2,

we analyse the response of these phenomena as we perturbatively increase the gravitational

strength . Our study is partly motivated by recent works in [15 – 17]. In these papers,

authors have argued in different ways that a version of HP transition occurs even at weak

coupling gauge theory. By AdS/CFT dictionary, this would show up as a transition in

strongly coupled gravity theory in the bulk. Noting the fact that string theory in AdS

space is as yet poorly understood, we study a much simpler system in this paper. We add

higher derivative terms in the supergravity action and study their effects on HP transition

as well as on orbifold decay. We note here that higher derivative terms would arise in gravity

action due to α′ corrections in underlying string theory. While a study with a general class

of higher derivative terms would be desirable, in this work, we consider only the effects due

to Gauss-Bonnet(GB) terms. One advantage of working with GB correction to the gravity

action is that the black holes, bubbles and orbifolds can be constructed explicitly.

In section 3, we analyse the black holes in GB theory with a particular focus on their

phase structures in five space-time dimensions. The phase structure depends crucially on

the GB coupling. For certain range of coupling, there exists three black hole phases. We

call them, small, intermediate or unstable and big black hole phase. It turns out that there

are two first order phase transitions. One of them is from small black hole to the big one

at a temperature scale much lower than that of inverse AdS curvature. The other one is

similar to that of usual HP transition where a crossover occurs from thermal AdS to the

big black hole phase. We compute the change in HP temperature in powers of the GB

coupling at the crossover.

In section 4, we study the bubbles in GB theory. We find that there exist bubble of

nothing solutions for any value of the asymptotic circle. This is unlike the case in simple

AdS gravity, where the bubble to exist, the circle size needs to be less than a critical value.

Consequently, by computing energy densities of the bubble and orbifold spacetimes, we

argue that orbifolds are always unstable and decay to bubble of nothing. The decay rate

can then be easily computed by identifying the bounce solution.

Many papers in the recent past have analysed the partition function of free N = 4 super

Yang-Mills theory and argued that the large N deconfinement transition occurs even at zero

coupling [16, 17]. In fact, it turned out that the transition appears exactly at the Hagedorn

temperature of the low temperature thermal AdS phase. Subsequently, non-perturbative

1/N effects near the Hagedorn transition was studied in [18]. This has been analysed in

the other limit of the ‘t Hooft coupling, λ → ∞ by proposing a phenomenological matrix
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model [19, 42, 43].

It is known that GB corrections arise in heterotic string theory, see for example [20].

In type IIB theory the corrections start off with R4. In the case with Gauss Bonnet

terms we do not expect the boundary theory on S3 × S1 to be N = 4 Yang Mills theory.

However in the limit α
′ → 0 the boundary theory should reduce to the strongly coupled

SYM theory. With the R2 corrections turned on, the gravity theory should correspond to

some deformation of N = 4 SYM. In section 5, we study this effective theory by using

a phenomenological matrix model proposed in [19]. This model is characterised by two

parameters which we call, following [19], a and b. Generally, (a, b) depend on the gauge

theory temperature and the ’t Hooft coupling λ. Following AdS/CFT, the effect of adding

higher derivative terms in the bulk translates to λ corrections to the boundary gauge theory.

Assuming an universal nature of the (a, b) model around the critical points, we analyse the λ

dependence of parameters (a, b) around the HP points. We do this numerically in section 5.

Finally, in section 6, we construct a toy model which captures the whole phase diagram

of the bulk. However, this requires introduction of four parameters in the matrix model

potential. These four parameters again depend on the temperature as well as the gauge

coupling. We then study the qualitative behaviour of this model. This paper ends with a

discussion of our results. We hope to report on a similar analysis for the type IIB theory

with R4 term in a future publication [21].

2. Black hole, bubble and AdS orbifold

In this section, we briefly recall black holes, bubbles and AdS orbifolds in AdS gravity in five

dimensions. We review the instability associated with the AdS orbifolds and calculate the

decay rate of these orbifolds to bubbles in the supergravity limit. Furthermore, we compute

an enhancement of the decay rate due to string wrapping around a compact direction of

the AdS orbifold. We also briefly review, following a suggestion due to Horowitz [22], as

to how this decay may be catalysed by tachyon condensation in string theory.

Black hole: Black hole in pure AdS-gravity is parametrised by a single parameter asso-

ciated with the energy of the hole. Denoting this parameter as m, we may write the metric

of the black hole as

ds2 = −
(

1 +
r2

l2
− m

r2

)

dt2 +

(

1 +
r2

l2
− m

r2

)−1

dr2 + r2(dθ2 + cos2θdΩ2
2), (2.1)

where l is related to the cosmological constant present in the action. This metric asymp-

totically approaches AdS space. The singularity is at r = 0 and the horizon is located at

r+, where r+ is a solution of equation

1 +
r2

l2
− m

r2
= 0. (2.2)

The Euclidean version of the metric is free of any conical singularity if the Euclidean time

has certain periodicity. Defining

r = r+ +
( r+

2l2
+

m

2r3
+

)

ρ2, (2.3)
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near r = r+, we can write the metric as

ds2 = dρ2 +
(r+

l2
+

m

r3
+

)2
ρ2dχ2 + r2

+dΩ2
3, (2.4)

where, we have used t = iχ. From here it follows that the metric is conically non-singular

if χ has a period

∆χ =
2πl2r3

+

r4
+ + ml2

=
2πr+l2

2r2
+ + l2

. (2.5)

Inverse of this periodicity is then identified with the black hole temperature. We note

that, for a fixed temperature (above a certain critical value), we always get two black hole

solutions with two different horizon sizes. We distinguish these two by calling them small

and big black holes. At the critical temperature, both these black holes meet. It turns out

that the smaller black hole is unstable with negative specific heat while the bigger one is

stable. The free energy of the black holes is given by,

F =
2π2r2

+

κ5

(

1 − r2
+

l2

)

. (2.6)

Here, κ5 is related to the five dimensional gravitational constant. We note that if the size

of the black hole is larger than the AdS scale l, the free energy becomes negative. Since

this is less than the free energy of thermal AdS space, there is a first order phase transition.

From (2.5), we see that for r+ = l, T = Tc = 3
2πl . So the transition occurs from thermal

AdS space phase to the black hole phase as we increase the temperature beyond Tc. The

crossover between these two geometries is known as HP transition [1].

Bubble: The other space-time that is of our interest is the AdS bubble [4, 5, 10, 11].

The metric can be obtained by analytically continuing ( t → iχ and θ → π/2 + iτ) the

black hole solution given in (2.1). We get

ds2 =

(

1 +
r2

l2
− m

r2

)

dχ2 +

(

1 +
r2

l2
− m

r2

)−1

dr2 + r2(−dτ2 + cosh2τdΩ2
2). (2.7)

If χ is restricted to the period as in (2.5), the metric is non-singular for r ≥ r+. This

geometry is known as a bubble of nothing solution. For large r, at any time τ , the metric

is χ circle times a two sphere. This circle collapses at r = r+. However, the two sphere

approaches a finite size r2
+cosh2τ . This two sphere is the boundary of the bubble. We see

that the metric is time dependent and is asymptotically dS3 × S1. As can be seen from

the dotted line in figure 6, below a certain critical value of ∆χ, for a given ∆χ, there are

two possible bubble solutions. The smaller one, however, is expected to be unstable as its

Euclidean continuation suffers from having modes with negative mass2 [24]. The critical

size of the χ circle, above which there are no bubble solutions, is given by

∆χc =
lπ√
2

for rc =
l√
2
. (2.8)
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AdS orbifold: The AdS orbifold, that we consider here, has been discussed in great

detail in [8, 9, 23]. A five dimensional AdS space is defined as the universal covering space

of a surface which obeys

−x2
0 + x2

1 + x2
2 + x2

3 + x2
4 − x2

5 = −l2, (2.9)

where, as before, l is the AdS curvature radius. The orbifold is obtained by simply identi-

fying points along the boost

ξ =
r+

l
(x4∂5 + x5∂4), (2.10)

where r+ being an arbitrary constant. Since the norm of the boost is given by ξ2 =

r2
+(−x2

4 + x2
5)/l

2, ξ2 can be positive or negative. However, to avoid closed time-like curves,

the region ξ2 < 0 is removed from space-time. In an appropriate coordinate system this

orbifolded space can be represented as

ds2 = (r̃2 − r2
+)

(

− dt̃2 +
l2

r2
+

cosh2(
r+t̃

l
)dΩ2

2

)

+
l2

r̃2 − r2
+

dr̃2 + r̃2dφ2, (2.11)

where r+ ≤ r̃ ≤ ∞ and 0 ≤ φ ≤ 2π. Further defining

r̃2 = r2
+

(

1 +
r2

l2

)

, t =
r+t̃

l
, χ̃ = r+φ, (2.12)

the metric becomes,

ds2 =

(

1 +
r2

l2

)

dχ̃2 +

(

1 +
r2

l2

)−1

dr2 + r2[−dt2 + cosh2tdΩ2
2]. (2.13)

We should note here that, in these coordinates, 0 < r < ∞. The Euclidean version of this

space-time (t → −iθ − iπ) clearly resembles thermal AdS once we reinterpret the periodic

coordinate χ̃ as Euclidean time. We record the metric here for later use:

ds2 =

(

1 +
r

l2

)

dχ̃2 +

(

1 +
r2

l2

)−1

dr2 + r2[dθ2 + cos2θdΩ2
2]. (2.14)

Instabilities and decay rates: We now see from (2.13) and (2.7) that both these space-

times have the same asymptotic geometry. The boundary is time dependent and is given

by dS3 × S1. However, a notable difference is while the orbifold exists for any size of the

asymptotic S1, the bubble appears only when this boundary circle has a maximum critical

size. The size is given by the expression in (2.8). Boundary energy densities of the orbifold

and the bubble are computed in [5]. They are given by

ρorbi = − 1

64πGl
, ρbubble = − 1

16πGl3

(

m +
l2

4

)

. (2.15)

Let us now consider the case where the size of the boundary circle is less than the critical

value given in (2.8). In the bulk, we can have both the bubble or the orbifold geometry.

However, in view of equation (2.15), we see that the orbifold will decay to the bubble of
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nothing by radiating away its energy [10, 11]. This is the analogue of Witten’s decay of

Kaluza-Klein vacuum to a bubble of nothing [6].1

As in the case of Kaluza-Klein decay, it is possible to find the bounce solution which

mediates this decay. This was discussed in some detail in [11]. As analysed there, it is

the Euclidean continuation of the smaller Schwarzschild black hole which acts as a bounce.

The metric for the bounce is therefore

ds2 =

(

1 +
r2

l2
− m

r2

)

dχ2 +

(

1 +
r2

l2
− m

r2

)−1

dr2 + r2(dθ2 + cos2θdΩ2
2). (2.16)

Having identified the bounce, we can calculate the semiclassical decay rate from the

orbifold to the bubble by evaluating the action difference between Euclideanised orb-

ifold (2.14) and the bounce (2.16). Though individual actions diverge due to large volume,

the difference remains finite once we require same asymptotic boundary conditions for χ̃

in (2.14) and for χ in (2.16). This is obtained by setting
√

1 +
R2

l2
βχ̃ =

√

1 +
R2

l2
− m

R2
βχ. (2.17)

Here βχ̃ is the period of χ̃ in (2.14) and βχ is the period of χ in (2.16); the expression of

the later is given in (2.5). Now the difference in actions is given by

∆I = Ibounce − Iorbifold

=
2 × 4

16πGl2

[
∫ βχ

0
dχ

∫ R

r+

r3dr

∫

dΩ2
3 −

∫ βχ̃

0
dχ̃

∫ R

0
r3dr

∫

dΩ2
3

]

=
ω3

8G

(

r3
+l2 − r5

+

2r2
+ + l2

)

. (2.18)

Here ω3 is the volume of unit three sphere. In getting the last expression we have made

use of the boundary condition (2.17).

Enhancement of decay rate due to string wrapping the circle: On generic grounds,

we expect an enhancement of orbifold decay rate when a Nambu-Goto string wraps around

the circle χ̃. This is what we intend to compute in this subsection. We noted that the decay

of the orbifold requires a bounce solution with a negative mode in its spectrum of small

fluctuation. The small Euclidean AdS-Schwarzschild black hole that we analysed in the

previous section has such a mode [24]. In what follows, we will assume that the presence

of a string does not remove this non-conformal negative mode. With this assumption, it is

now easy to see how the decay rate changes as we wrap a string with action

S = T

∫

d2ξ
√

detγ (2.19)

along χ̃ direction of the orbifold and χ direction of the bounce solution. Here, γ is the

induced metric on the string. We expect that the change in the decay rate will be propor-

tional to the exponential of the action difference ∆S = Sbounce − Sorbifold. This quantity

1When embedded in supersymmetric theory, one employs antiperiodic boundary condition of the

fermions around the circle. This breaks supersymmetry completely.
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can be easily computed as follows:

∆S = Sbounce − Sorbifold

= T

∫

d2ξ
√

detγbubble − T

∫

d2ξ
√

detγorbifold

= T

∫ βχ

0
dχ

∫ R

r+

dr − T

∫ βχ̃

0
dχ̄

∫ R

0
dr

= T
2πl2r2

+

2r2
+ + l2

. (2.20)

To get to the last step, we have used (2.17) and also made a large R approximation.2 From

the above expression we see that the decay rate increases with r+. This, in turn, implies

that enhancement is larger for larger size bubble in the final state. We see from the above

expression that ∆S increases with string tension T . However, for a string with large energy

density, we would have to go beyond test string approximation.

Decay via tachyon: In a recent paper [22], Horowitz has argued that a black string can

catalyse Witten’s decay process. When a black brane is wrapped around a compact circle,

the circle size becomes a function of the position. For a suitable choice of brane, regardless

of its asymptotic size, this circle can reach string scale at the brane horizon. In fact, tuning

the charges of the branes, this circle size can be made to vary very slowly. For an anti-

periodic boundary condition of the fermions around this circle, one expects a tachyonic

mode to appear as the size shrinks to string scale. This mode may then induce a topology

changing process by pinching off the circle at the horizon. This, in turn, creates a bubble.

A concrete example of this is the D3 brane in ten dimension. For our purpose, instead of

a flat space-time, let us consider N D3 branes filling up the boost orbifold R1,1/Z. In the

near horizon limit one gets AdS orbifold in five dimensions [11]. On the other hand, after

the tachyon condensation, we have a bubble of the kind that we have been considering.

Since this decay is catalysed by a string scale process, one would expect the rate to be

much faster than the one through supergravity bounce.

In the next section we discuss black holes, bubbles and orbifolds in GB theory. We

study how the above features change as a function of the GB coupling.

3. Gauss-Bonnet black holes

We start by considering (n+1) dimensional gravitational action in the presence of a negative

cosmological constant Λ along with a GB term.

I =

∫

dn+1x
√−gn+1

[

R

κn+1
− 2Λ + α(R2 − 4RabR

ab + RabcdR
abcd)

]

. (3.1)

This action possesses black hole solutions which we call GB black holes [20, 26 – 31] . In

the above action, α is the GB coupling. As the higher derivative corrections are expected

2A similar computation was performed in [25] in the context of Witten’s bubble
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to appear from the α′ corrections in underlying string theory, we will often refer to such

corrections as α′ corrections in this paper. The metric of these holes can be expressed as

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

n−1, (3.2)

where V (r) is given by

V (r) = 1 +
r2

2α̂
− r2

2α̂

[

1 − 4α̂

l2
+

4α̂m

rn

]
1

2

. (3.3)

We first define various parameters that appear in the above equation. dΩ2
n−1 is the metric

of a n − 1 dimensional sphere. l2 is related to the cosmological constant as l2 = −n(n −
1)/(2κn+1Λ). Furthermore, we have defined α̂ = (n − 2)(n − 3)ακn+1, where κn+1 is the

n+1 dimensional gravitational constant. The parameter m in (3.3) is related to the energy

of the configuration as

M =
(n − 1)ωn−1m

κn+1
, (3.4)

where ωn−1 is the volume of the n − 1 dimensional unit sphere. Asymptotically, the

metric (3.3) goes to AdS space, since in this limit

V (r) = 1 +

[

1

2α̂
− 1

2α̂

(

1 − 4α̂

l2

)
1

2
]

r2. (3.5)

We see from here that the metric is real if and only if

α̂ ≤ l2/4. (3.6)

In our discussion, we will always consider α̂ satisfying the above bound. The metric (3.2)

has a central singularity at r = 0. The zeros of V (r) correspond to the locations of the

horizons.

In five dimension, for which n = 4, there is a single horizon at

r2 = r2
+ =

l2

2

[

− 1 +

√

1 +
4(m − α̂)

l2

]

. (3.7)

We note here that for a black hole to exist m > α̂.

Thermodynamics of these black holes can be obtained via standard Euclidean action

calculation. Such calculations were performed, for example, in [30]. Following these com-

putations, the free energy and temperature can be written down as

F =
ωn−1r

n−4
+

κn+1(n − 3)(r2
+ + 2α̂)

[

(n − 3)r4
+

(

1 − r2
+

l2

)

− 6(n − 1)α̂r4
+

l2

+(n − 7)α̂r2
+ + 2(n − 1)α̂2

]

, (3.8)

T =
(n − 2)

4πr+(r2
+ + 2α̂)

[

r2
+ +

n − 4

n − 2
α̂ +

n

n − 2

r4
+

l2

]

. (3.9)
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The black hole entropy is given by

S =

∫

T−1

(

∂M

∂r+

)

dr+ =
4πωn−1r

n−1
+

κn+1

[

1 +
n − 1

n − 3

2α̂

r2
+

]

, (3.10)

and the specific heat is

C =
∂M

∂T
=

4π(n − 1)ωn−1r
n−3(r2 + 2α̂)2[α̂l2(n − 4) + r2(l2(n − 2) + nr2)]

κn+1[α̂r2(6nr2 − l2(n − 8)) + r4(nr2 − (n − 2)l2) − 2(n − 4)α̂2l2]
. (3.11)

Many interesting features of the GB black holes, related to local and global stabilities,

can be inferred from a detailed study of the thermodynamic quantities. In the rest of the

section, we proceed to do so by considering the holes in five dimensions (n = 4). Let us

first introduce two dimensionless quantities

ᾱ =
α̂

l2
, and r̄ =

r+

l
. (3.12)

We would like to express various thermodynamic quantities in terms of these dimensionless

constants. The free energy given in (3.8) can be written as

F = − ω3l
2

κ5(r̄2 + 2ᾱ)

[

r̄6 + (18ᾱ − 1)r̄4 + 3ᾱr̄2 − 6ᾱ2
]

. (3.13)

It then follows from (3.13), that within the range of allowed value of the coupling ᾱ

(see (3.6)), F starts being positive at r̄ = 0 and changes sign only once as we increase

r̄. The number of extrema of the free energy, however, crucially depends on ᾱ. In particu-

lar, when ᾱ is in the region

0 < ᾱ ≤ 1

36
, (3.14)

F has three extrema. At these points, F takes non-zero positive values. However, for

1

36
≤ ᾱ ≤ 1

4
, (3.15)

F has no extremum for any non-zero r̄. It starts with a nonzero value at r̄ = 0, then

decreases monotonically and becomes negative at large r̄. Typical behaviour of the free

energy as a function of r̄ is shown figure 1. We will refer back to this plot when we analyse

the stability of these holes.

For now, we turn our attention to the temperature of the black holes. It follows

from (3.9) that the temperature is given by3

T =
r̄ + 2r̄3

2πl(r̄2 + 2ᾱ)
. (3.17)

3In the limit l → ∞ (Λ = 0) this solution reduces to the asymptotically flat Gauss Bonnet black hole.

The temperature is then given by

T =
r+

2π(r2
+ + 2α̂)

(3.16)

For finite value of α̂, temperature begins with zero value at r+ = 0 and gradually increases for small r+.

Finally it reaches a maximum value at r+ =
√

2α and then again goes towards zero at large r+. Since the

temperature has a maximum, above this critical value there is no black hole solution. At any temperature

below there are two black hole solutions, small and large. The small black hole has positive specific heat

and is locally stable. The larger one is unstable due to its negative specific heat. This is to be contrasted

with the AdS Schwarzschild black hole solution in R
2 gravity, where we have only one unstable solution

existing at all temperatures.
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Figure 1: Free energy as a function of x = r̄ for different values of ᾱ. The thicker line is for

ᾱ = 1/40 and the other one ᾱ = 1/32.
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Figure 2: Temperature as a function of x = r̄ for different values of ᾱ. The thicker line is for

ᾱ = 1/44 and the other one ᾱ = 1/30.

At r̄ = 0, temperature starts out from zero and, regardless of the value of ᾱ, it increases

for small r̄. However, at larger r̄, the number of extrema depends on ᾱ. In the region

given in (3.14), there are two of these extrema. Both of these disappear as we increase ᾱ

to region (3.15). A plot of the temperature as a function of r̄ is shown in figure 2.

To examine the phase structure of these black holes, it is instructive to consider the

behaviour of the free energy as a function of temperature (for different values of ᾱ).

From (3.13) and (3.17), it is possible to construct the temperature dependence of the

free energy. However, the analytical expression is not very illuminating. Therefore, we plot

the nature of the free energy as a function of temperature in figure 3. This plot is for two

different values of ᾱ belonging to the two different regions given in (3.14) and (3.15). Note

that, as we increase ᾱ from region (3.14) to region (3.15), nature of F changes at a critical

value ᾱ = ᾱc = 1/36. We therefore study these two regions separately.

Phase structure for ᾱ ≤ ᾱc: When ᾱ ≤ ᾱc, the free energy is shown by the thicker

line in figure 3. At low temperature, it has only one branch (shown as branch I in the

figure). However, when the temperature is increased beyond a certain value (which we

call T1), two new branches appear (II and III). One of these two branches (II) meets
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Figure 3: Free energy as a function of temperature. The thicker one is for ᾱ = 1/50 while the

other one is for ᾱ = 1/30.

branch I at a temperature beyond, say T3, and they both disappear. On the other hand,

branch III continues to decrease rapidly, cuts branch I at temperature, say T2, and becomes

negative at a temperature which we will call Tc in the future. While computing specific

heat using (3.11), we find that it is positive for branch I, and III. Therefore, these phases

correspond to stable black holes. They, however, differ in their sizes; branch I represents

smaller sized black holes than that of branch III. Going back now to branch II, we find that

the specific heat is negative. We, therefore, conclude that branch II represents an unstable

phase of the black hole.

The above picture is similar to that of the van der Waals gas. In particular, the Gibbs

free energy of van der Waals gas, for an isotherm, behaves in a similar manner as we vary

pressure. A thermodynamic equilibrium state is reached by minimising the Gibbs free

energy. Likewise, in our case, equilibrium state would correspond to branch I of the free

energy all the way up to temperature T2 and then branch III from temperature T2 and

above. The free energy curve then remains concave as expected for a thermodynamical

system. We, however, note that since there is a discontinuity of dF/dT at T = T2, one has

a first order phase transition at T2. Two black hole phases would differ from each other

at this point by a discontinuous change in their entropies. We will call these as the first

Hawking-Page (HP1) transition for reasons that will be obvious later.

This phase structure can be nicely described by constructing a Landau function around

the critical point. By identifying the dimensionless quantity r̄ as an order parameter, we

can construct a function Φ(T, r̄) as4

Φ(T, r̄) =
ω3l

2

κ5
(3r̄4 − 4πlT r̄3 + 3r̄2 − 24πᾱlT r̄ + 3ᾱ). (3.18)

At the saddle point of this function, that is when ∂Φ
∂r̄ = 0, we get back the expression of the

temperature given in (3.17). If we then substitute back the expression of temperature in

4To construct the Landau function, we employ a method similar to the one discussed it [32, 33].
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Figure 4: Landau function Φ as a function of order parameter x = r̄ for different temperatures.

We have taken ᾱ = 1/50.

to (3.18), Φ(r̄) reduces to the free energy given in (3.13). As can be seen from figure 4, for

temperature T < T2, Φ(T, r̄) has only one global minimum. This corresponds to the small

black hole phase. However, at T = T2, appearance of two degenerate minima suggests a

coexistence of small and big black hole phases. Finally for temperature beyond T2, only

the big black holes phase remains (as this phase minimizes the Landau function). Clearly,

there is a discrete change in the order parameter r̄ at T = T2. This is what we expect for

a first order phase transition.

Phase structure for ᾱ > ᾱc: For ᾱ > ᾱc, the free energy curve is shown by the thin

line in figure 3. Unlike the previous case, free energy and its derivatives do not show any

discontinuity. Therefore, there is no HP1 transition. Only a single black hole phase is

found to exist at any temperature.

Global phase structure of GB black holes: As discussed earlier, for black holes with

ᾱ = 0, there is a crossover from AdS to AdS black holes at a critical temperature 3
2πl . What

happens to this transition as we turn on ᾱ? In this situation, we note that we still have two

geometries to consider. First one is again a thermal AdS with metric being the Euclidean

continuation of (3.2). The function V (r) is given in (3.5). We identify this thermal AdS

space, having ᾱ dependent effective cosmological constant, with zero free energy. Now,

from figure 3. we see that above a critical temperature, the free energy of the GB black

hole becomes negative, making it more stable compared to the effective AdS geometry.

We identify this as a HP2 point. This crossover temperature can be computed as a power

series in ᾱ and is given by

Tc =
3

2πl
− 33ᾱ

4πl
+ O(ᾱ2). (3.19)

We notice here that the GB correction reduces the transition temperature. Similar phe-

nomenon was noticed earlier in many AdS-gravity theories with higher curvature terms [34 –

37]. The global phase structure is shown in figure 5.

To this end, we would like to point out that the above picture of GB black holes is

quite similar to that of the five dimensional charged AdS black holes [38, 39]. The stability

properties of the charged black holes depend on whether we are considering fixed potential
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Figure 5: Global phase structure of GB black holes. For temperature T < Tc, AdS lowers the free

energy, on the other hand for T > Tc the black hole phase is preferred. This plot is for ᾱ = 1/30.

ensemble or fixed charge ensemble. For the case of fixed charge ensemble, various phases of

black holes resemble that of the thick line in figure 3. As in our case, small black holes and

large black holes are separated by a first order phase transition point. However, a major

difference is that for the charged black holes, in fixed charge ensemble, thermal AdS is not

a solution. Consequently, these holes are globally stable. This is unlike GB black holes,

where there is a HP2 transition. Below HP2 temperature, they are unstable.

4. Bubbles in GB theory and instabilities

In this section, we turn our attention to bubble spacetime in GB theory. After constructing

these bubbles, we compute their energy densities. We find that due to the presence of these

bubbles with same asymptotic structure as of the AdS orbifolds in GB theory, the orbifolds

become unstable. The nature of these decays depend on the value of ᾱ. In what follows,

we will be mainly interested in studying these instabilities as a function of ᾱ. We will also

highlight the differences that occur when we compare the present situation with the one

with ᾱ = 0.

The bubbles in the GB theory can be constructed by analytically continuing the coor-

dinates of the GB black holes as t → iχ, θ → π/2 + iτ. Here theta parametrises one of the

angles of dΩn−1 in (3.2). The solutions then takes the form

ds2 = V (r)dχ2 +
dr2

V (r)
− r2dτ2 + r2cosh2τdΩ2

n−3, (4.1)

where V (r) is given in (3.3). Above metric is nonsingular in the region r ≥ r+ if χ has a

periodicity

∆χ =
4πr̄l(r̄2 + 2ᾱ)

(n − 2)(r̄2 + n−4
n−2 ᾱ + n

n−2 r̄4)
. (4.2)

In the following we will use dimensionless quantity ∆χ̄ = ∆χ/l to parametrise the circle.

We first note that at asymptotically large distance, the metric reduces to dSn−1×S1 where

S1 corresponds to the χ circle. More precisely, up to a conformal scaling by L2/r2, the
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boundary metric becomes

ds2 = dχ2 + L2(−dτ2 + cosh2τdΩ2
n−2). (4.3)

In the above equation, we have defined

L =
√

2α̂

[

1 −
(

1 − 4α̂

l2

)
1

2
]− 1

2

. (4.4)

At r = r+, the proper radius of this circle collapses at V (r) = 0. However, the n − 2

sphere approaches a finite size r2
+cosh2τ . Therefore (4.1) represents a bubble of nothing in

GB theory with size r+. In the rest of this section, we will mostly focus ourselves on the

bubbles in five dimensions.

Many of the features of these bubbles can be understood from the behaviour of the

periodicity ∆χ̄ as a function of ᾱ and r̄. Firstly, as can be seen from figure 6., for any

non-zero ᾱ, there exists a bubble for any size of the χ circle. This is very much unlike the

case when ᾱ = 0 where there is a critical radius above which the bubbles are no longer

present. Secondly, for a given ᾱ in the range (3.14), and for a given periodicity of χ, there

can be at most three bubbles of varied sizes. This can be seen from the solid line in figure

6. However, as we increase ᾱ above 1/36 and go to the range (3.15), for fixed ∆χ, we get

a single bubble of fixed size. This is shown by the dashed line in figure 6.

Continuing our discussions in five dimensions, let us note that as in the case of AdS

gravity, in GB theory, we also have another geometry with the same asymptotic metric.

These are the AdS orbifolds (2.13) with the AdS curvature l replaced by L as in (4.4).

The asymptotic boundary of the GB bubble spacetime is dS3 × S1. One would then

expect, by AdS/CFT correspondence, that some deformation of N = 4 SU(N) Yang-

Mills theory at large but finite λ should be dual to the bubble. Clearly, similar to the AdS

bubbles, for the GB bubbles, the CFT lives on a time dependent space. The boundary stress

tensor can be computed from the bulk stress tensor. These bulk stress tensor components,
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for GB bubbles, can easily be obtained and are given by

T τ
τ =

1

κ5L3
m,

Tχ
χ = − 3

κ5L3
m,

T θ
θ =

1

κ5L3
m,

T φ
φ =

1

κ5L3
m, (4.5)

where we have parametrised dΩ2 by the coordinates θ and φ. We note here that the

components of the stress-tensor computed with respect to the orbifold in GB theory.5

Positive sign of T τ
τ implies that the solution has negative mass.

As of now, we have learned that, in GB theory, bubble space exists for any value of

m. This, in turn, means that we can have a bubble of any size. Furthermore, we note

that the bubble and AdS orbifold have asymptotically the same metric, namely dS3 × S1.

The energy density of the bubble spacetime is however less than that of the orbifold. We

may, therefore, conclude that AdS orbifold is an unstable background in GB theory. It will

always decay to bubble by radiating away its energy. As a result, bubble of any size will be

produced. Once it is produced, due to the time-dependent nature of the metric, the radius

of the bubble will increase exponentially with time.

It is easy to compute the decay rate from the orbifold to bubble. This can be done, as

before, by identifying the bounce solution.

5. Matrix model: some numerical computation

In the previous sections we have analysed the phase structure of the gravitational theory

in the presence of a higher derivative correction. In the light of the AdS/CFT correspon-

dence we would now like to analyse these phases from the gauge theory on the boundary.

Specifically, we will study the thermal aspects of the SU(N) gauge theory on the boundary

of AdS5 which is S3 × S1. The effective theory on the boundary can be described by an

unitary matrix model:

Z(λ, T ) =

∫

dUeSeff (U), (5.1)

where U = P exp(i
∫ β
0 A(τ)dτ) and A(τ) is the zero mode of A0 on S3. This is the lightest

mode, and the effective action is obtained by integrating out all the massive modes. In

general Seff(U) is a polynomial in the traces of U and its powers that are allowed by the

ZN symmetry. The coefficients of these terms depend on the ’tHooft coupling λ (that is

related to α
′

by, α
′
√

2λ = l2 from the AdS/CFT correspondence) and temperature T .

5One easy way to compute these expressions is to first calculate various components of stress-energy

tensor for GB black holes. The formalism to compute Tµν for the GB black holes is given in [40]. One can

then make a proper analytical continuation to get stress tensor for the GB bubbles.
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These coefficients have been worked out in the weak coupling expansion in [41]. In our

analysis we will restrict ourselves to the first two terms,

Seff(U) = atrUtrU † +
b

N2
(trUtrU †)2, (5.2)

where, a and b are functions of temperature T and λ. An order parameter characterising

the deconfined phase of the gauge theory is given by the expectation value of the Polyakov

loop 1/N 〈trU〉.
The saddle point equations for this effective theory are given by,

aρ + 2bρ3 = ρ 0 ≤ ρ ≤ 1

2

=
1

4(1 − ρ)

1

2
≤ ρ ≤ 1, (5.3)

where ρ2 = (1/N2)trUtrU †. As mentioned this matrix model contains only the first two

terms of the effective gauge theory in the weak coupling expansion. It was shown in [19]

that with this truncation, in the large N limit one can reproduce the same thermodynamic

features as of the bulk black hole thermodynamics near the critical points. This model

thus appears to fall in the same universality class as that of the boundary effective gauge

theory in the strong coupling limit.

The phase structure in the bulk theory that we have discussed in section 3 contains

various distinct qualitative features depending on the value of the correction parameter α
′

.

For nonzero α
′

, the phase diagram is modified in the regime where r+ is small compared to√
α′ . However as long as r+ (the solutions corresponding to the black holes at a particular

temperature) are greater than α′, the phase diagram is qualitatively the same as that of

the bulk theory without higher derivative corrections. There are two possibilities.

• We can ignore this small black hole solution in the supergravity approximation, so

that we only concentrate on solutions r+ >
√

α′ . In this domain, it makes sense to

compare the bulk physics with that of the boundary (a, b) matrix model discussed in

the earlier paragraph.

• If we include the small black hole solution in the supergravity approximation, then in

order to reproduce the bulk phases, the boundary matrix model needs to be modified.

In the next section we will propose a matrix model potential that captures the bulk

physics including the solution r+ which is less than
√

α
′

.

The following part of this section is devoted to the study of the (a, b) model numerically,

incorporating the corrections due to the finite ’tHooft coupling λ. In this analysis we will

take N → ∞. We first work in the limit λ → ∞ and then by taking λ large but finite.

The main aim is to compute a and b as functions of T and of λ (to the first order in

1/
√

λ). This will be done by comparing the matrix model potential with the action on the

gravity side with α′ corrections. In this paper we are considering the corrections due to

the Gauss-Bonnet term. As mentioned before R2 corrections are not known to occur in the
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Figure 7: Plots of a(T, 0) and b(T, 0)

supergravity limit of type IIB theory. However the following analysis is a fruitful exercise

that can easily be adapted for the R4 terms that arise in this theory.

The comparison between matrix model potential and the action of the bulk theory is

valid as long as we can neglect the string loop corrections. The corresponding tempera-

ture at which the supergravity description breaks down is identified as the Gross-Witten

transition point in [19, 43] on the matrix model side.

Let T0 be the temperature at which the black hole nucleation starts. For T > T0, it is

well known that for the gravity theory without α′ corrections, one gets two solutions for

the black hole. The small black hole is unstable and the larger one stable. The larger one

undergoes a Hawking-Page transition at T = Tc. It was shown by Witten [3] that thermal

AdS5 corresponds to the confined phase of the large N gauge theory on the boundary. A

natural order parameter that characterises the deconfined phase is the Polyakov loop. In

this matrix model it is ρ.

Let us study the case without α′ corrections first. This corresponds to the λ → ∞
limit. Consider T > T0, for which we have6

2aρ2
1,2 + 2bρ4

1,2 + log(1 − ρ1,2) + f = −I1,2, (5.4)

where the I1,2 are the actions for the large and small black-holes respectively and ρ1,2 are

the corresponding solutions in the matrix model. The constant f = log(2) − 1/2 is added

to make the potential from (5.3) continuous at ρ = 1/2. Since the values of ρ1,2 are those

at the extremum of the left hand side of (5.4), we have two more equations that are given

by (5.3).

For a given temperature, T , I1,2 are known from the gravity side, so the problem

now is to solve the above equations for a(T ), b(T ) and ρ1,2. We do this numerically.

The solutions are plotted in figure (7). Note that a(T ) and b(T ) increases monotonically.

As a consequence of this the dashed line in figure (8) that represents the left hand side

of (5.3) moves towards Tc as the temperature is increased thus generating two solutions for

ρ corresponding to the small and the big black holes in between. ρ = 0 corresponding to

the thermal AdS5 is always a solution.

6We will set l, ω3, κ5 to 1 in the numerical computations.
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Having known the variations of a(T, 0) and b(T, 0) with respect to the temperature we

now incorporate the α′ corrections to I1,2 to get the first order dependence on 1/
√

λ. We

have

a(T, 1/
√

λ) = a(T, 0) +
1√
λ

∂a(T )

∂(1/
√

λ)
|1/

√
λ=0 +O(1/λ3/2), (5.5)

b(T, 1/
√

λ) = b(T, 0) +
1√
λ

∂b(T )

∂(1/
√

λ)
|1/

√
λ=0 +O(1/λ3/2).

The first order variations of equation (5.4) with respect to 1/
√

λ gives,

2
∂a(T )

∂(1/
√

λ)
ρ2
1,2 + 2

∂b(T )

∂(1/
√

λ)
ρ4
1,2 = −

√
λδI1,2(T ). (5.6)
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In the above equations, δI1,2(T ) are given by,

δI1,2(T ) = α
′

β(δF1,2)

= − β√
2λ

(3r4
1,2 + 24r2

1,2 + 9). (5.7)

Where F is given by equation (3.13). From these we get the values of ∂a(T )

∂(1/
√

λ)
and ∂b(T )

∂(1/
√

λ)

shown in figure (9).

At this point some comments about the sign of b are in order. In the limit when the

t’Hooft coupling λ goes to infinity numerical computations show that b indeed is positive.

However as we move from λ → ∞ to finite λ (that is obtained by including α
′

corrections in

the bulk) we see that at any particular temperature ∂b(T )/∂(1/
√

(λ)) is negative. Though

this numerical calculation shows that b decreases from a positive value as we move down

towards weak coupling, it is not clear whether the sign of b will turn out to be negative or

positive at weak coupling. In case it turns out to be positive, we presume that the results

for the gravitational side should correspond qualitatively to those of the weakly coupled

gauge theory.

The above analysis shows that the behavior of the coefficients as functions of temper-

ature and λ are indeed the ones that we expect from the phases of the bulk theory as long

as we concentrate on the black hole solutions with r+ >
√

α′ . The expansions are carried

out about λ → ∞ as it was argued in [19] that the effective theory that is computed in the

weak coupling falls in the same universality class as the one in the strong coupling limit.

The addition of higher derivative term in the bulk does give information about 1/
√

λ cor-

rections, however this (a, b) model is unable to capture the phases including the small black

hole solution. In the following section we will analyse this issue, in detail, by proposing

another model which qualitatively reproduces various bulk phases of section 3.

6. A modified matrix model

In this section we propose a modified (toy) matrix model which incorporates some of the

additional qualitative features on the gravity side arised due to the GB term. We find, the

minimal action that would reproduce these features needs to be quartic in ρ2 and can be

given by

S(ρ2) = 2

[

A4ρ
8 − A3ρ

6 + A2ρ
4 +

(

1 − 2A1

2

)

ρ2

]

, (6.1)

where Ai’s are the parameters, which depend on the temperature as well as on the coupling

constant. In the limit where the A4 and A3 vanish we get the (a, b) model [19].

The equations of motion ensuing from the action in (6.1) are given as follows. We

write

F (ρ) =
∂S(ρ2)

∂ρ2
= [8A4ρ

6 − 6A3ρ
4 + 4A2ρ

2 + (1 − 2A1)]. (6.2)

Then the equations in two different regions are

ρF (ρ) = ρ , 0 ≤ ρ ≤ 1
2 ,

= 1
4(1−ρ) , 1

2 ≤ ρ ≤ 1. (6.3)
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The potentials that follows from the above action is given by

V (ρ) = −A4ρ
8 + A3ρ

6 − A2ρ
4 + A1ρ

2 , 0 ≤ ρ ≤ 1

2
,

= −A4ρ
8 + A3ρ

6 − A2ρ
4 +

(

A1 −
1

2

)

ρ2 − 1

4
log[2(1 − ρ)] +

1

8
,

1

2
≤ ρ ≤ 1. (6.4)

Let us analyze the solutions of equations of motion given by (6.3). The fact that there

are four parameters instead of two has made the analysis technically more involved than

(a, b) model [19]. For various ranges of parameters the model shows different qualitative

behaviour. As we will see we need to impose necessary restrictions on the parameters so

that the model reproduces the features that we found on the gravity side. Before analyzing

the solutions one comment is in order. In the following we will find the analog of small stable

black hole appearing as a minimum of the potential but it always comes with an additional

maximum of the potential. We do not have on the bulk side a solution corresponding to

this maximum. We interpret this solution as a possible decay mode of the small stable

black hole which may be due to some stringy mechanism.

The behaviours of the solutions are encoded in the polynomial F (ρ) given in (6.2). We

begin with the coefficient of the lowest order term A1. From (6.1) we see in order to make

ρ = 0 tachyon-free we need 0 < F (0) ≤ 1 i.e. 0 ≤ A1 < 1/2. Once that is imposed we

consider the next coefficient A2. As we see on the bulk side our action should admit ( in

one phase) 3 solutions that correspond to a small black hole, an intermediate black hole

and a big black hole. A necessary condition for the existence of three solutions is A2 > 0.

Though we get this constraint from a different argument it agrees with [19]. Thus our

model at a vanishing limit of higher coefficients reduces to (a, b) model.

Restrictions on the higher coefficients are slightly more cumbersome and depends on

the positions of the turning points of the polynomial F . In that context it is useful to

consider the quadratic polynomial in ρ2: f(ρ2) = (1/ρ) ∂
∂ρF (ρ). This is given by f(x) =

48A4x
2 − 24A3x + 8A2. The zeroes of f determine the non-trivial turning points of F .

In terms of this polynomial f the two different ranges of ᾱ correspond to the following

constraints:

• ᾱ > 1/36: For f(1) = 48A4 − 24A3 + 8A2 < 0 there is one turning point at some

0 < ρ− < 1. With parameters in this range we can have either two solutions (one

maximum and one minimum of potential) or no solution. There is no way we can

obtain three solutions in this phase. Moreover, from the restriction on the parameters

it is clear that the range of parameters is not continuously connected with the corre-

sponding range where (a, b)-model is valid (i.e. A4 = A3 = 0). We identify this phase

with the range of ᾱ which corresponds to ᾱ > 1/36 on the gravity side. However, that

is not sufficient to ensure that there is always one minimum that correspond to the

single black hole on the bulk side. For that we need to impose a further restriction

on the coefficients such that, the turning point satisfies ρ− < 1/2 and F (ρ−) > 0.

Then we always get a maximum for ρ < 1/2 ( that is in the region with no cut) and

a minimum of the potential. As the parameter varies the position of this minimum
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changes from the ρ < 1/2 region to the ρ > 1/2 region. So this phase corresponds to

the restrictions: f(1) = 48A4 − 24A3 + 8A2 < 0, ρ− < 1/2 and F (ρ−) > 0.

• ᾱ < 1/36: Again we look for turning points in the range 0 < ρ ≤ 1. For f(1) =

48A4 − 24A3 + 8A2 > 0 either we get two turning points which we call ρ− and

ρ+ (ρ− < ρ+) or none of them. That gives rise to 3 possibilities: the number of

solutions could be 4 (consists of two maxima and two minima), or 2 (consists of one

maximum and one minimum)or 0. This phase is continuously connected with that

of the (a, b) model and we identify this phase with the range of ᾱ given by ᾱ < 1/36

on the gravity side. The more detailed structure of the solutions depends on the

position of the turning points ρ− and ρ+ and the values of the polynomial F (ρ) at

the turning points. Let us first consider F (ρ−) > 0 with 0 < ρ− < 1/2. There are

two possibilities: (i) If F (1/2) < 0 we have two solutions, one maximum and other

minimum in ρ < 1/2 range. The minimum corresponds to the stable small black hole.

We may or may not have two more solutions in the range ρ > 1/2. If we have two

solutions they would correspond to intermediate and big black hole. (ii) If F (1/2) > 0

we have one solution (maximum) in ρ < 1/2 and the other (minimum) in ρ > 1/2.

This minimum corresponds to the big black hole. The remaining possibilities are (iii)

ρ− < 1/2, F (ρ−) < 0 and (iv) ρ− > 1/2, F (1/2) < 0. In both of these cases there

is no solution in the range 0 < ρ < 1/2. Finally if there is no turning point and

F (1/2) < 0 there will be no solution in the range 0 < ρ < 1/2. Since the analysis on

the bulk side then requires that there is a solution for 1/2 < ρ < 1 we need to impose

the following constraint, namely, there should exist some value of ρ, ρ− < ρ0 < 1

such that 4ρ0(1 − ρ0)F (ρ0) > 1. That will give one maximum and one minimum in

the range 1/2 < ρ < 1 that corresponds to the small and the big black hole.

Thus we see for both the phases we need additional restrictions which shows there

are regions of parameters that does not agree with the features of gravity phase. This

suggests the fact that in the strongly coupled gauge theory there are restrictions on various

parameters. It may be interesting to calculate these parameters from field theory set up

(for weakly coupled gauge theory) and compare the values with the restrictions obtained

above.

In order to discuss the variation of potential with parameters it is useful to give a

graphical description. We have four parameters, so for the sake of graphical description we

restrict number of parameters to 2. We consider only the phases that corresponds to the

ᾱ < 1/36. We take fixed values of A1 and A4 and study the features with the variation

of two other parameters. We have chosen the values to be A1 = .025 and A4 = 2.083.

We have given plot of the potential against ρ in figure 10 and 11. In order to make the

extrema explicit we choose different scales for the potential for two different ranges of ρ,

namely, 0 ≤ ρ ≤ 1/2 and 1/2 ≤ ρ ≤ 1. The values of A2 and A3 are decreasing from the

curve in bottom to that in top in figure 10 and from the curve on top to that in bottom in

figure 11. There is always one minimum at ρ = 0 where the potential vanishes. As we will

see in figure 12 we need to choose values of A2 and A3 restricted within a particular region
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outside which the features that we get from the bulk will be absent. In the following, we

give V (ρ) vs. ρ plots for different values of A2 and A3:

• (A2, A3) = (.45, 2): Here we get two solutions: one maximum and one local minimum

in the range ρ ≤ 1/2 (i.e where there is no cut) and no solution at ρ ≥ 1/2. We identify

the minimum with the small stable black hole. This corresponds to low temperature

behaviour of GB black hole where we get only one small black hole solution.

• (A2, A3) = (.4, 2): Here we get four solutions: In addition to the above maximum

and minimum in the range ρ ≤ 1/2 we get one more local maximum and one more

local minimum appearing in the range 1/2 ≤ ρ ≤ 1. These latter maximum and

minimum can be identified with the intermediate black hole and the big black hole.

We identify this with the nucleation of the big black hole and intermediate unstable

black hole in the gravity picture.

• (A2, A3) = (.385, 1.9375): For further decrease of the parameters, the heights of the

local minimum in the range 0 ≥ ρ ≥ 1/2 (figure 10)increases and the height of the

local minimum in the range 1/2 ≥ ρ ≥ 1 decreases(figure 11) . At this value of the

parameters the heights of the two minima become equal. We can identify this point

with a transition from small black hole to big black hole on the gravity side which is

termed as HP1 transition.

• (A2, A3) = (.38485, 1.93688): (Due to close proximity this plot appears on the top

of the earlier plot and not distinguishable in the present scale.) The height of the

minimum in the range ρ ≥ 1/2 becomes zero and thus equal to the potential at ρ = 0.

On the gravity side this corresponds to energy of big black hole reaching zero and

becoming equal to that of thermal AdS triggering HP2 transition.

• (A2, A3) = (.25, 1.5): Here we get two solutions because in the region ρ ≤ 1/2 the

local minimum and local maximum is on the verge of disappearing. However, the

two solutions in the range ρ ≥ 1/2 will remain with the height of the minimum in

ρ ≥ 1/2 keeps on decreasing. This corresponds to the point beyond which the small

black hole on the gravity side disappears.

• (A2, A3) = (.248, 1.25): As we decrease A2 and A3 further, the solutions in the range

ρ ≤ 1/2 cease to exist (figure 10). The minimum in the range ρ ≥ 1/2 (figure 11)

becomes more and more deeper. This is in keeping with the fact that, at high

temperature on the gravity side the only stable configuration remains is the big black

hole.

As we see from the above analysis the coefficients decrease with temperature, unlike the

behaviour of the coefficients in the (a, b)-model. This can be interpreted as the temperature

gradient of the coefficients at the first order of inverse ’t Hooft coupling has a negative sign

relative to that at the zeroeth order. At this range, where appreciable 1/λ correction is

taken into account, the contribution at first order dominates over that at zeroeth order.
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Figure 10: Potential as function of ρ for the range 0 ≤ ρ ≤ 1/2 for increasing values of A2 and A3.

The different values of (A2, A3) are given above. The plots associated with (.38485, 1.93688)and

(.385, 1.9375) are not distinct in this scale.
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Figure 11: Potential as function of ρ for the range 1/2 ≤ ρ ≤ 1 for increasing values of A2 and

A3. The values of (A2, A3) used in the plots are given above. The plots associated with (.38485 ,

1.93688) and (.385 , 1.9375) are not distinct in this scale.

Here we give a graphical presentation of the behaviour of the solutions using a para-

metric plot of different critical points in the A2-A3 plane in figure 12 keeping A1 and A4

fixed as above. As we vary the parameters we encounter a curve IV in the A2-A3 plane,
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Figure 12: Parametric plots of different critical points in the A2-A3 plane. We choose A1 = 0.25

and A4 = 2.083. In the region which is below or on the left side of curve I the saddle points ρ±
cease to exist. In the region above curve IV the potential of ρ+ vanishes. Curve II corresponds to

HP transition and on curve III the saddle points ρ1 , ρ2 merge.

above which the saddle point associated with the small black hole has energy negative.

From the analysis of black holes on the gravity side, it follows that the small black hole

energy is always greater than thermal AdS ensuring the stability of the latter. So, in what

follows, we restrict ourselves to the region below curve IV.

In the region bounded by IV, III and I, there are three saddle points. One is ρ = 0

which corresponds to the thermal AdS. There are two more saddle points: a local maximum

at ρ = ρ1 and a local minimum at ρ = ρ2. The latter corresponds to the small black hole

that we obtain on the gravity side. There is no solution analogous to ρ1 in the gravity side.

In the region bounded by II, III, IV and I, there appears two more saddle points. One

of them ρ = ρ3 is a local maximum and the other one ρ = ρ4 is a local minimum. They

correspond to the intermediate and the stable big black hole respectively. In the region

on the left hand side of curve I, the saddle points ρ = ρ1, ρ2 cease to exist. In the region

above the curve IV, as we have already mentioned, the potential of the saddle point ρ = ρ1

becomes negative showing the energy of the associated small black hole on the gravity side

becomes less than that of thermal AdS.

Similarly, the thermal history (for this choice of parameter) can be obtained from

figure 12 as follows. As we mentioned earlier, A2 and A3 will decrease with temperature

along the curve C. As we follow the curve C from right to left, we find the ρ = 0, ρ1, ρ2 are
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the solutions on the right of curve III. As we cross curve III, we encounter two additional

saddle points ρ = ρ3, ρ4. Crossing the curve II corresponds to the Hawking-Page transition.

As we cross curve I, the saddle point corresponds to the small black hole disappears.

Like the general case, here also as we see in the region bounded by the curve I, along

with a local minimum ( at ρ = ρ1) we always obtain a local maximum ( at ρ = ρ2 ). We

interpret this maximum, as we said earlier, as a bounce solution through which the small

stable black hole decays. It will be interesting to understand this instability on the gravity

side.

7. Discussion

In this paper, we have discussed phase transition of asymptotically AdS black hole solu-

tions in presence of Gauss-Bonnet term. As long as ᾱ, strength of the coupling to GB

term remains above certain critical value ᾱc, one gets a single black hole phase at any

temperature. However, as the coupling comes down below the critical value two additional

black holes appear. We called them small and intermediate black holes. The intermediate

black hole is found to have negative specific heat. It turns out that this small stable black

hole is a local minimum below a critical temperature. Beyond this temperature small black

hole disappears. We have studied the associated phase diagram and find that the phase

structure resembles that of van der Wall’s gas. In addition to the the standard Hawking-

Page transition, we have identified one more phase transition where the two branches of

the phase diagram meet. We find the specific heat diverges at this new critical point.

From a different perspective, the Euclidean version of the black hole solution has been

interpreted as the bounce mediating the decay of AdS orbifold into the bubbles of nothing.

It was found earlier that for the radius of circle above a critical value the AdS orbifold is

stable while below that bound the AdS orbifold decays. After adding the higher derivative

terms in the action, we find that there is a bubble solution that exists for all values of the

radius and has an energy density lower than that of AdS orbifold. This suggests that the

AdS orbifold is unstable for any radius. One of the stringy feature that we have addressed

in this paper is the modification of decay rate in presence of a background string wrapped

on the circle and we find the decay rate gets enhanced. It would be interesting to find

tachyonic decay ensuing from wrapped black brane in this set up.

Five dimensional theory of gravity usually corresponds to some gauge theory on the

boundary and the analysis on the gravity side has natural implications about the gauge

theory. In absence of Gauss-Bonnet term, the gravity theory on Euclidean AdS ( along

with S5) is known to be dual to be pure N=4 SYM on a three sphere at finite temperature

and the phase diagram associated with the gravity theory captures thermal history of N=4

SYM on S3. In a similar spirit, we expect, dual of this five dimensional gravity theory

in presence of Gauss-Bonnet term is some deformation of the above gauge theory and the

phase diagram captures its thermal history. In [19], qualitative features of N = 4 SYM on

S3 was studied from the perspective of a matrix model. This model is phenomenological in

nature and is charecterised by two parameters (a, b). On generic ground, one expects these

parameters to be λ and T dependent. Appealing to the universal nature of this model near
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the critical points, we find out λ dependence of (a, b). This is done by mapping the bulk α′

correction to the boundary. This method can easily be used to find similar 1/λ dependence

of matrix model coefficients in the case of other higher derivative corrections of the gravity

action, such as, R4 term in IIB theory.

We have also proposed a modified matrix model that captures the qualitative features

of the phase diagram of the bulk theory. Unlike (a, b) matrix model this model is non-

universal and the phase diagram is reproduced only in a selected region of the parameter

space. In addition the temperature dependence of the coefficients turn out to be different

from usual linear increasing function. We also find there is a bounce through which the

small black hole can decay. It will be interesting to identify this instability on the gravity

side. We hope to return with some of these issues in future.
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